Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nutr ; 153(7): 1930-1943, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37182694

RESUMO

BACKGROUND: The glucose requirement of dairy cows is mainly met by increasing the rate of hepatic gluconeogenesis. However, due to negative energy balance, the liver of periparturient cows is under oxidative stress induced by lipid over-mobilization, and hepatic gluconeogenesis is reduced. Studies have demonstrated that resveratrol, which is widely known for its antioxidant properties, can alter hepatic gluconeogenesis. However, it is not clear whether resveratrol could regulate hepatic gluconeogenesis by its antioxidant properties. OBJECTIVES: This study aims to investigate the precise effect of resveratrol in hepatic gluconeogenesis, the role of resveratrol on hydrogen peroxide (H2O2)-induced oxidative stress in hepatocytes and the potential mechanism using primary hepatocytes. METHODS: Primary hepatocytes were isolated from 5 healthy Holstein calves (1 d old, 30 to 40 kg, fasted) and treated with different concentrations of resveratrol (0, 5, 10, 25, or 50 µM) combined with or without H2O2 (0, 100, or 200 µM) induction for 12 h. RESULTS: Resveratrol enhanced the expression of gluconeogenic genes of calf hepatocytes in a dose-dependent manner (P < 0.05). Conversely, H2O2 suppressed the expression of gluconeogenic genes and induced oxidative stress (P < 0.05), which was improved by resveratrol in calf hepatocytes (P < 0.001). Furthermore, the mechanistic target of rapamycin complex 2 (mTORC2)-AKT pathway was found to negatively regulate gluconeogenesis. An AKT inhibitor was used to assess the role of the mTORC2-AKT pathway in the effects of resveratrol. The results showed resveratrol promoted hepatic gluconeogenesis by inhibiting the mTORC2-AKT pathway. Moreover, sestrin 2 (SESN2) upregulated the activity of mTORC2. We further found that resveratrol decreased SESN2 levels (P < 0.001). CONCLUSIONS: This study indicated that resveratrol enhances the gluconeogenic capacity of calf hepatocytes by improving H2O2-induced oxidative stress and modulating the activity of the SESN2-mTORC2-AKT pathway, implying that resveratrol may be a promising target for ameliorating liver oxidative stress in transition cows.


Assuntos
Gluconeogênese , Proteínas Proto-Oncogênicas c-akt , Feminino , Animais , Bovinos , Resveratrol/farmacologia , Resveratrol/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Peróxido de Hidrogênio , Hepatócitos , Fígado/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo
2.
Cell Death Dis ; 14(4): 292, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185889

RESUMO

Evidence shows that short-chain fatty acids (SCFAs) play an important role in health maintenance and disease development. In particular, butyrate is known to induce apoptosis and autophagy. However, it remains largely unclear whether butyrate can regulate cell ferroptosis, and the mechanism by which has not been studied. In this study, we found that RAS-selective lethal compound 3 (RSL3)- and erastin-induced cell ferroptosis were enhanced by sodium butyrate (NaB). With regard to the underlying mechanism, our results showed that NaB promoted ferroptosis by inducing lipid ROS production via downregulating the expression of solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4). Moreover, the FFAR2-AKT-NRF2 axis and FFAR2-mTORC1 axis accounts for the NaB-mediated downregulation of SLC7A11 and GPX4, respectively, in a cAMP-PKA-dependent manner. Functionally, we found that NaB can inhibit tumor growth and the inhibitory effect could be eliminated by administrating MHY1485 (mTORC1 activator) and Ferr-1 (ferroptosis inhibitor). Altogether, in vivo results suggest that NaB treatment is correlated to the mTOR-dependent ferroptosis and consequent tumor growth through xenografts and colitis-associated colorectal tumorigenesis, implicating the potential clinical applications of NaB for future colorectal cancer treatments. Based on all these findings, we have proposed a regulatory mechanism via which butyrate inhibits the mTOR pathway to control ferroptosis and consequent tumorigenesis.


Assuntos
Ferroptose , Humanos , Ácido Butírico/farmacologia , Carcinogênese , Transformação Celular Neoplásica , Alvo Mecanístico do Complexo 1 de Rapamicina , Serina-Treonina Quinases TOR
3.
Front Immunol ; 14: 1119747, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090706

RESUMO

Introduction: Newly weaned animals are susceptible to a wide range of microbial infections taking a high risk of developing post-weaning diarrhea. Trained immunity is the capacity of the innate immune system to produce a stronger and non-specific response against a secondary infection after the inflammatory response caused by previous stimulus has returned to normal state. The objective of this study was to evaluate if the heat-inactivated Escherichia coli (IEC) as an immunostimulant on suckling pups elicits a protective effect on the intestine of post-weaning rats challenged with Salmonella Typhimurium (S.Typhimurium). We adapted a newborn rat model for this purpose. Methods: Sixty newborn pups were randomly separated into two groups: IEC group (n =30) orally administrated IEC during suckling, while the CON group received orally the same dose of saline. Both of the two group challenged with various doses of S.Typhimurium after experiencing a 4-week resting period. Twelve of individuals were selected to detect the survival rate, and ten of the rest were necropsied 48 hours post-challenge. Results and Discussion: The results showed that oral administration of IEC during suckling alleviated the injury in ileal morphology induced by post-weaning S.Typhimurium infection via increasing the levels of two tight junction proteins [zonula occluden-1 (ZO-1) and Occludin-1] and several secreted proteins (Lysozyme, Mucin-2, and SIgA) in the intestinal mucosa. Furthermore, the pre-stimulation with IEC significantly increased cytokines tumor necrosis factor-alpha (TNF- α) and interleukin-1 beta (IL-1 ß) expressions in an enhanced secondary reaction way after experiencing a 4-week resting period. This implicated the possible involvement of trained immunity. The 16S rDNA sequence results showed that pre-stimulation with IEC decreased the abundance of Clostridia, Prevotella, Christensenellaceae_R-7_group and Parabacteroides after intestinal infection of S.Typhimurium. Our results confirmed that the previous oral administration of IEC had a protective effect on S.Typhimurium-induced intestinal injury in weaned rats by inducing a robust immune response. The present study suggested a new strategy for preventing intestinal infection of newborn animals.


Assuntos
Escherichia coli , Enteropatias , Animais , Ratos , Salmonella typhimurium , Desmame , Temperatura Alta , Intestinos , Animais Recém-Nascidos , Administração Oral
4.
Adv Sci (Weinh) ; 10(17): e2206826, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37083230

RESUMO

The amino acid-stimulated Rag GTPase pathway is one of the main pathways that regulate mechanistic target of rapamycin complex 1 (mTORC1) activation and function, but little is known about the effects of growth factors on Rag GTPase-mediated mTORC1 activation. Here, a highly conserved insulin-responsive phosphorylation site on folliculin (FLCN), Ser62, that is phosphorylates by AKT1 is identified and characterized. mTORC2-AKT1 is localized on lysosomes, and RagD-specific recruitment of mTORC2-AKT1 on lysosomes is identified as an essential step in insulin-AKT1-mediated FLCN phosphorylation. Additionally, FLCN phosphorylation inhibits the activity of RagC GTPase and is essential for insulin-induced mTORC1 activation. Functionally, phosphorylated FLCN promotes cell viability and induces autophagy, and also regulates in vivo tumor growth in an mTORC1-dependent manner. Its expression is also positively correlated with mTORC1 activity in colon cancer, clear cell renal cell carcinoma, and chordoma. These results indicate that FLCN is an important intermediate for cross-talk between the amino acid and growth factor pathways. Further, FLCN phosphorylation may be a promising therapeutic target for diseases characterized by mTORC1 dysregulation.


Assuntos
Insulina , Transdução de Sinais , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosforilação , Transdução de Sinais/fisiologia , Insulina/metabolismo , Aminoácidos/metabolismo , Carcinogênese , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo
5.
J Microbiol Immunol Infect ; 56(5): 893-908, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36890066

RESUMO

Intestinal microbiota, which contains bacteria, archaea, fungi, protists, and viruses including bacteriophages, is symbiotic and evolves together with humans. The balanced intestinal microbiota plays indispensable roles in maintaining and regulating host metabolism and health. Dysbiosis has been associated with not only intestinal diseases but other diseases such as neurology disorders and cancers. Faecal microbiota transplantation (FMT) or faecal virome or bacteriophage transplantation (FVT or FBT), transfers faecal bacteria or viruses, with a focus on bacteriophage, from one healthy individual to another individual (normally unhealthy condition), and aims to restore the balanced gut microbiota and assist in subduing diseases. In this review, we summarized the applications of FMT and FVT in clinical settings, discussed the advantages and challenges of FMT and FVT currently and proposed several considerations prospectively. We further provided our understanding of why FMT and FVT have their limitations and raised the possible future development strategy of FMT and FVT.


Assuntos
Bacteriófagos , Transplante de Microbiota Fecal , Humanos , Viroma , Fezes/microbiologia , Previsões , Bactérias
6.
PLoS Genet ; 19(2): e1010629, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36787291

RESUMO

Pharmacological vitamin C (VC) is a potential natural compound for cancer treatment. However, the mechanism underlying its antitumor effects remains unclear. In this study, we found that pharmacological VC significantly inhibits the mTOR (including mTORC1 and mTORC2) pathway activation and promotes GSK3-FBXW7-mediated Rictor ubiquitination and degradation by increasing the cellular ROS. Moreover, we identified that HMOX1 is a checkpoint for pharmacological-VC-mediated mTOR inactivation, and the deletion of FBXW7 or HMOX1 suppresses the regulation of pharmacological VC on mTOR activation, cell size, cell viability, and autophagy. More importantly, it was observed that the inhibition of mTOR by pharmacological VC supplementation in vivo produces positive therapeutic responses in tumor growth, while HMOX1 deficiency rescues the inhibitory effect of pharmacological VC on tumor growth. These results demonstrate that VC influences cellular activities and tumor growth by inhibiting the mTOR pathway through Rictor and HMOX1, which may have therapeutic potential for cancer treatment.


Assuntos
Ácido Ascórbico , Neoplasias , Humanos , Proteína 7 com Repetições F-Box-WD/metabolismo , Ácido Ascórbico/farmacologia , Quinase 3 da Glicogênio Sintase/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fatores de Transcrição/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo
7.
Microbes Infect ; 25(5): 105099, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36642296

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is the main causative pathogen of diarrhea. It causes acute watery diarrhea that leads to rapid dehydration and prostration within hours. ETEC is still an important cause of neonatal and post-weaning diarrhea in pigs. However, the mechanism underlying ETEC-induced diarrhea is not yet clear. In this study, we investigated these mechanisms and found that the mTORC1 pathway plays a role in the host response to ETEC F4 infection. Specifically, we found that ETEC F4 treatment significantly repressed mTORC1 activity as well as cell proliferation, promoted apoptosis and regulated the expression of diarrhea-related genes via the promotion of PKA-mediated phosphorylation of SIN1, which plays a critical role in the assembly of mTORC2. These findings indicate that PKA is a checkpoint for ETEC-induced diarrhea. In terms of potential therapeutic strategies, we found that ZnSO4 dramatically rescued ETEC F4-induced the inhibition of mTORC1 activity and cell viability and the induction of apoptosis and alterations in the expression of diarrhea-related genes. Thus, the present findings demonstrate that ETEC F4 influences mTORC1 activation by inhibiting the assembly of mTORC2 through PKA-mediated phosphorylation of SIN1. Further, supplementation with ZnSO4 is an effective strategy for blocking the effect of ETEC F4 on mTORC1 activation, and it may have potential clinical applications in the treatment of ETEC F4-induced diarrhea.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Suínos , Animais , Diarreia , Apoptose , Células Epiteliais
8.
Cell Prolif ; 56(3): e13360, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36377675

RESUMO

Paeonia is a well-known species of ornamental plants, traditional Chinese medicines, and emerging oilseed crops. Apart from nutritional unsaturated fatty acids, the seeds of peonies are rich in stilbenes characterized by their wide-ranging health-promoting properties. Although the typical stilbene resveratrol has been widely reported for its multiple bioactivities, it remains uncertain whether the trimer of resveratrol trans-gnetin H has properties that regulate cancer cell viability, let alone the underlying mechanism. Autophagy regulated by trans-gnetin H was detected by western blotting, immunofluorescence, and quantitative real-time PCR. The effects of trans-gnetin H on apoptosis and proliferation were examined by flow cytometry, colony formation and Cell Counting Kit-8 assays. Trans-gnetin H significantly inhibits cancer cell viability through autophagy by suppressing the phosphorylation of TFEB and promoting its nuclear transport. Mechanistically, trans-gnetin H inhibits the activation and lysosome translocation of mTORC1 by inhibiting the activation of AMPK, indicating that AMPK is a checkpoint for mTORC1 inactivation induced by trans-gnetin H. Moreover, the binding of TSC2 to Rheb was markedly increased in response to trans-gnetin H stimulation. Similarly, trans-gnetin H inhibited the interaction between Raptor and RagC in an AMPK-dependent manner. More importantly, trans-gnetin H-mediated autophagy highly depends on the AMPK-mTORC1 axis. We propose a regulatory mechanism by which trans-gnetin H inhibits the activation of the mTORC1 pathway to control cell autophagy.


Assuntos
Neoplasias , Paeonia , Estilbenos , Humanos , Proteínas Quinases Ativadas por AMP , Autofagia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Paeonia/química , Paeonia/metabolismo , Resveratrol , Sementes/química , Sementes/metabolismo , Estilbenos/análise , Estilbenos/química , Estilbenos/farmacologia
9.
Nutrients ; 14(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36501031

RESUMO

Paeonia species are well-known ornamental plants that are used in traditional Chinese medicines. The seeds of these species are rich in stilbenes, which have wide-ranging health-promoting effects. In particular, resveratrol, which is a common stilbene, is widely known for its anticancer properties. Suffruticosol C, which is a trimer of resveratrol, is the most dominant stilbene found in peony seeds. However, it is not clear whether suffruticosol C has cancer regulating properties. Therefore, in the present study, we aimed to determine the effect of suffruticosol C against various cancer cell lines. Our findings showed that suffruticosol C induces autophagy and cell cycle arrest instead of cell apoptosis and ferroptosis. Mechanistically, suffruticosol C regulates autophagy and cell cycle via inhibiting the mechanistic target of rapamycin complex 1 (mTORC1) signaling. Thus, our findings imply that suffruticosol C regulates cancer cell viability by inducing autophagy and cell cycle arrest via the inhibition of mTORC1 signaling.


Assuntos
Paeonia , Estilbenos , Alvo Mecanístico do Complexo 1 de Rapamicina , Autofagia , Estilbenos/farmacologia , Resveratrol/farmacologia , Pontos de Checagem do Ciclo Celular , Apoptose
10.
Mol Nutr Food Res ; 66(23): e2200186, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36189894

RESUMO

SCOPE: Mechanistic target of rapamycin (mTOR) serves as a central signaling node in the coordination of cell growth and metabolism, and it functions via two distinct complexes, namely, mTOR complex 1 (mTORC1) and mTORC2. mTORC1 plays a crucial role in sensing amino acids, whereas mTORC2 involves in sensing growth factors. However, it remains largely unclear whether mTORC2 can sense amino acids and the mechanism by which amino acids regulate mTORC2 has not been studied. METHODS AND RESULTS: After treating cells with indicated concentration of amino acids for different time, it is found that the mTORC2 activation is significantly increased in response to amino acids stimulation, especially cystine. Particularly, knockdown solute carrier family 7 member 11 (SLC7A11) by siRNA shows that SLC7A11-mediated cystine uptake is responsible for activating mTORC2. Mechanistically, the study finds that p38 is activated in response to cystine stimulation, and co-immunoprecipitation (Co-IP) experiments suggest that p38 regulates the assembly of components within mTORC2 by mediating the phosphorylation of the mTORC2 subunit mitogen-activated protein kinase-interacting protein 1 (Sin1) in a cystine-dependent manner. Finally, combined with inducers and inhibitors of ferroptosis and cell viability assay, the study observes that cystine-mediated regulation of the p38-Sin1-mTOR-AKT pathway induces resistance to ferroptosis. CONCLUSION: These results indicate that cystine-induced activation of the p38-Sin1-mTORC2-AKT pathway suppresses ferroptosis.


Assuntos
Ferroptose , Neoplasias , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Fosforilação , Cistina/farmacologia , Cistina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Serina-Treonina Quinases TOR/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
11.
J Dairy Sci ; 105(9): 7668-7688, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35931488

RESUMO

Mastitis is generally considered a local inflammatory disease caused by the invasion of exogenous pathogens and resulting in the dysbiosis of microbiota and metabolites in milk. However, the entero-mammary pathway theory may establish a possible link between some endogenous gut bacteria and the occurrence and development of mastitis. In the current study, we attempted to investigate differences in the gut microbiota profile and metabolite composition in gut and serum from healthy cows and those with subclinical mastitis and clinical mastitis. Compared with those of healthy cows, the microbial community diversities in the feces of cows with subclinical mastitis (SM) and clinical mastitis (CM) were lower. Lower abundance of Bifidobacterium, Romboutsia, Lachnospiraceae_NK3A20_group, Coprococcus, Prevotellaceae_UCG-003, Ruminococcus, and Alistipes, and higher abundance of the phylum Proteobacteria and the genera Escherichia-Shigella and Streptococcus were observed in CM cows. Klebsiella and Paeniclostridium were significantly enriched in the feces of SM cows. Several similarities were observed in feces and serum metabolites in mastitic cows. Higher levels of proinflammatory lipid products (20-trihydroxy-leukotriene-B4, 13,14-dihydro-15-keto-PGE2, and 9,10-dihydroxylinoleic acids) and lower levels of metabolites involved in secondary bile acids (deoxycholic acid, 12-ketolithocholic acid), energy (citric acid and 3-hydroxyisovalerylcarnitine), and purine metabolism (uric acid and inosine) were identified in both SM and CM cows. In addition, elevated concentrations of IL-1ß, IL-6, tumor necrosis factor-α and decreased concentrations of glutathione peroxidase and superoxide dismutase were detected in the serum of SM and CM cows. Higher serum concentrations of triglyceride and total cholesterol and lower concentrations of high-density lipoproteins in mastitic cows might be related to changes in the gut microbiota and metabolites. These findings suggested a significant difference in the profile of feces microbiota and metabolites in cows with different udder health status, which might increase our understanding of bovine mastitis.


Assuntos
Doenças dos Bovinos , Mastite Bovina , Metaboloma , Microbiota , Animais , Bovinos , Doenças dos Bovinos/metabolismo , Doenças dos Bovinos/microbiologia , Fezes , Feminino , Nível de Saúde , Mastite Bovina/metabolismo , Mastite Bovina/microbiologia , Leite/metabolismo
12.
Microbiol Spectr ; 10(4): e0136222, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35867408

RESUMO

Clostridioides difficile infection (CDI) is a burden to health care systems worldwide. Gut microbiota dysbiosis associated with CDI has been well accepted. However, contribution of fungal mycobiota to CDI has recently gained research interest. Here, we report the gut mycobiota composition of 149 uniquely well characterized participants from a prospective clinical cohort and evaluate the discriminating ability of gut mycobiota to classify CDI and non-CDI patients. Fecal samples were divided into two groups: (i) CDI (inpatients who had clinically significant diarrhea and positive nucleic acid amplification testing [NAAT] and received subsequent CDI therapy, n = 58) and (ii) non-CDI, which can be further divided into three subgroups: (a) carrier (inpatients with positive stool NAAT but without diarrhea; n = 28); (b) diarrhea (inpatients with negative stool NAAT; n = 31); and (c) control (inpatients with negative stool NAAT and without diarrhea; n = 32). Fecal mycobiota composition was analyzed by internal transcribed spacer 2 (ITS2) sequencing. In comparison to non-CDI patients, CDI patients tend to have gut mycobiota with lower biodiversity, weaker fungi correlations, and weaker correlations between fungi and host immune factors. Notably, 11 genera (Saccharomyces, Penicillium, Aspergillus, Cystobasidium, Cladosporium, and so on) were significantly enriched in non-CDI patients, and Pichia and Suhomyces were enriched in patients with CDI, while 1 two genera, Cystobasidium and Exophiala, had higher abundance in patients with diarrhea compared with CDI (linear discriminant analysis [LDA] > 3.0; P < 0.05). Ascomycota and Basidiomycota (or Candida and Saccharomyces) exhibited a strong negative correlation (r ≤ -0.714 or r ≤ -0.387; P < 0.05), and the ratios of Ascomycota to Basidiomycota or genera Candida to Saccharomyces were dramatically higher in CDI patients than in non-CDI patients (P < 0.05). A disease-specific pattern with much weaker fungal abundance correlations was observed in the CDI group compared to that in the non-CDI and diarrhea groups, suggesting that these correlations may contribute to the development of CDI. Our findings provided specific markers of stool fungi that distinguish CDI from all non-CDI hospitalized patients. This study's potential clinical utility for better CDI diagnosis warrants further investigation. IMPORTANCE Clostridioides difficile is an opportunistic bacterial pathogen that causes a serious and potentially life-threatening infection of the human gut. It remains an existing challenge to distinguish active infection of CDI from diarrhea with non-CDI causes. A few large prospective studies from recent years suggest that there is no single optimal test for the diagnosis of CDI. Previous research has concentrated on the relationship between bacteria and CDI, while the roles of fungi, as a significant proportion of the gut microbial ecosystem, remain understudied. In this study, we report a series of fungal markers that may add diagnostic values for the development of a more systematic approach to accurate CDI diagnosis. These results help open the door for better understanding of the relationship between host immune factors and the fungal community in the context of CDI pathogenesis.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Infecções por Clostridium/diagnóstico , Infecções por Clostridium/microbiologia , Diarreia/microbiologia , Ecossistema , Humanos , Pacientes Internados , Estudos Prospectivos
13.
Adv Nutr ; 13(5): 1882-1900, 2022 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-35561748

RESUMO

Mechanistic target of rapamycin complex 1 (mTORC1) is a multi-protein complex widely found in eukaryotes. It serves as a central signaling node to coordinate cell growth and metabolism by sensing diverse extracellular and intracellular inputs, including amino acid-, growth factor-, glucose-, and nucleotide-related signals. It is well documented that mTORC1 is recruited to the lysosomal surface, where it is activated and, accordingly, modulates downstream effectors involved in regulating protein, lipid, and glucose metabolism. mTORC1 is thus the central node for coordinating the storage and mobilization of nutrients and energy across various tissues. However, emerging evidence indicated that the overactivation of mTORC1 induced by nutritional disorders leads to the occurrence of a variety of metabolic diseases, including obesity and type 2 diabetes, as well as cancer, neurodegenerative disorders, and aging. That the mTORC1 pathway plays a crucial role in regulating the occurrence of metabolic diseases renders it a prime target for the development of effective therapeutic strategies. Here, we focus on recent advances in our understanding of the regulatory mechanisms underlying how mTORC1 integrates metabolic inputs as well as the role of mTORC1 in the regulation of nutritional and metabolic diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Doenças Metabólicas , Aminoácidos/metabolismo , Glucose/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Lipídeos , Alvo Mecanístico do Complexo 1 de Rapamicina , Doenças Metabólicas/metabolismo , Nucleotídeos , Nutrientes , Serina-Treonina Quinases TOR/metabolismo
14.
J Agric Food Chem ; 69(51): 15716-15727, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34918923

RESUMO

T-2 toxin is a trichothecene mycotoxin commonly found in animal feed and agricultural products. Evidence indicates that T-2 toxin induces apoptosis and autophagy. This study investigated the role of ferroptosis in T-2 toxin cytotoxicity. RAS-selective lethal compound 3 (RSL3) and Erastin were applied to initiate ferroptosis. RSL3- and Erastin-initiated cell death were enhanced by T-2 toxin. Treatment with the ferroptosis inhibitor ferrostatin-1 markedly restored the sensitizing effect of T-2 toxin to RSL3- or Erastin-initiated apoptosis, suggesting that ferroptosis plays a vital role in T-2 toxin-induced cytotoxicity. Mechanistically, T-2 toxin promoted ferroptosis by inducing lipid reactive oxygen species (ROS), as N-acetyl-l-cysteine significantly blocked T-2 toxin-induced ferroptosis. Moreover, T-2 toxin decreased the expression of solute carrier family 7 member 11 (SLC7A11) and failed to further enhance ferroptosis in SLC7A11-deficient cells. SLC7A11 overexpression significantly rescued the enhanced ferroptosis caused by T-2 toxin. T-2 toxin induces ferroptosis by downregulating SLC7A11 expression. Ferroptosis mediates T-2 toxin-induced cytotoxicity by increasing ROS and downregulating SLC7A11 expression.


Assuntos
Ferroptose , Toxina T-2 , Animais , Apoptose , Lipídeos , Espécies Reativas de Oxigênio , Toxina T-2/toxicidade
15.
Anim Nutr ; 7(4): 1296-1302, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34786502

RESUMO

In systematically considering the advantages and disadvantages of complementarity in high or low milk feeding, novel milk feeding schemes involving altering the volume of supplied milk in different stages of the pre-weaning period but maintaining the total milk feeding volume were tested. Twenty-seven newborn male Holstein calves were selected and randomly assigned to 3 treatments. Calves in the control (CON) group were fed 7 L of milk daily from 4 to 66 d of age. Calves in the low-high (LH) group were fed 6 L of milk daily at the beginning, and then the daily feeding volume was later increased to 7 to 8 L of milk, which served as the early-period low-volume feeding group. The calves in the high-low (HL) group were fed 7 to 8 L daily at the beginning, and then the daily feeding volume was decreased to 6 L of milk, which served as the early-period high-volume feeding group. Then all calves were fed 3 L of milk daily from 67 to 70 d of age, weaned at 70 d of age, and then fed starter feed to 100 d of age. All calves had access to the starter feed from 15 to 100 d of age. The diarrheal condition of calves was recorded daily and the growth performance including the starter feed intake and body weight of calves was recorded at 70 and 100 d of age. Then, five 100-d-old calves from each treatment were sampled for measurement of plasma indices, ruminal morphology, and volatile fatty acids. When compared with the CON and LH groups, calves in the HL group exhibited a significantly increased body weight and lower diarrhoeal rate. When compared with the CON group, calves in the HL group exhibited a significantly increased average daily feed intake, ruminal epithelium papillae length, total volatile fatty acids, and percentages of propionate and butyrate. Moreover, the significantly increased plasma immunoglobulin G (IgG) content and a trend of decreased tumor necrosis factor-α (TNF-α) content (P = 0.083) were also identified in the HL group when compared with the CON group. Overall, the early-period high-volume feeding for calves produced greater body weight gain and a lower incidence of diarrhea.

16.
Microbiol Spectr ; 9(2): e0010521, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34494854

RESUMO

Subclinical mastitis (SCM) is one of the highly infectious diseases in dairy cows with the characteristics of high incidence and nonvisible clinical symptoms. The gastrointestinal microbiota is closely related to mastitis. Inulin is a prebiotic fiber with functions in improving intestinal microbial communities and enhancing the host's immunity. However, the impact of dietary inulin on the rumen inner environment remains unknown. The current study investigated whether inulin could relieve SCM by affecting the profiles of ruminal bacterial and metabolites in dairy cows. Inulin inclusion rates were 0, 100, 200, 300, and 400 g/day per cow, respectively. Inulin increased milk yield, milk protein, and lactose and reduced the somatic cell counts (SCC) in milk. In serum, the concentration of proinflammatory cytokines, such as interleukin-6 (IL-6), IL-8, tumor necrosis factor α (TNF-α), and malondialdehyde (MDA) were decreased, and IL-4 and superoxide dismutase (SOD) were increased. Meanwhile, inulin increased the concentration of propionate, butyrate, and lactic acid (LA), while it decreased NH3-N in rumen. The propionate- and butyrate-producing bacteria (e.g., Prevotella and Butyrivibrio) and several beneficial commensal bacteria (e.g., Muribaculaceae and Bifidobacterium) as well as metabolites related to energy and amino acid metabolism (e.g., melibiose and l-glutamate) were increased. However, several proinflammatory bacteria (e.g., Clostridia UCG-014, Streptococcus, and Escherichia-Shigella) were decreased, accompanied by the downregulation of lipid proinflammatory metabolites, for example, ceramide(d18:0/15:0) [Cer(d18:0/15:0)] and 17-phenyl-18,19,20-trinor-prostaglandin E2. In the current study, the above indicators showed the best response in the 300 g/day inulin group. Overall, dietary supplementation of inulin could alleviate inflammatory responses in cows with SCM through improving the rumen inner environment. IMPORTANCE The correlation between mastitis and the gastrointestinal microbiome in dairy cows has been demonstrated. Regulating the profile of rumen microorganisms may contribute to remission of subclinical mastitis (SCM). Supplementation of inulin in the diets of cows with SCM could increase the abundance of short-chain fatty acid (SCFA)-producing bacteria and beneficial commensal bacteria in rumen and meanwhile the levels of amino acids and energy metabolism. Conversely, the abundance of ruminal bacteria and metabolites with proinflammatory effects were decreased. Our study suggests that the improvement of the rumen internal environment by inulin supplementation could ameliorate inflammatory responses during SCM in dairy cows and thus improve lactation performance and milk quality. Our results provide a theoretical basis for regulation measures of SCM in dairy cows.


Assuntos
Bactérias/metabolismo , Fibras na Dieta/uso terapêutico , Microbioma Gastrointestinal/fisiologia , Inulina/uso terapêutico , Mastite/dietoterapia , Mastite/veterinária , Ração Animal/análise , Animais , Bovinos , Citocinas/sangue , Dieta/veterinária , Suplementos Nutricionais , Feminino , Humanos , Prebióticos , Rúmen/microbiologia
17.
J Dairy Sci ; 104(5): 5631-5642, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33663818

RESUMO

Subacute ruminal acidosis (SARA) continues to be a common and costly metabolic disorder in high-producing dairy cows worldwide. The objective of this study was to evaluate if increasing the concentration of physically effective neutral detergent fiber (peNDF) in diets can reduce the risk of SARA in cows fed a high-concentrate diet. Thirty second-parity Holstein cows in mid lactation (131 ± 8.3 d in milk) were randomly allocated to 3 dietary treatments (10 dairy cows per group): high (11.3%, high peNDF8.0), medium (10.6%, medium peNDF8.0), or low (9.0%, low peNDF8.0) concentration of peNDF8.0. The diets were prepared by mixing the same total mixed ration (57% concentrate and 43% roughages) for 10, 18, or 60 min, respectively. The treatments were fed for 36 d with 21 d for adaptation and 15 d for sampling. The peNDF8.0 intake was positively correlated with the peNDF8.0 concentration. Chewing and ruminating times adjusted for dry matter intake and NDF intake were linearly increased with the increased dietary peNDF8.0 concentration. The high peNDF8.0 diet decreased the number of meals per day. The increased dietary peNDF8.0 concentration linearly increased the rumen fluid pH, the molar percentage of acetate and isobutyrate, acetate-to-propionate ratio, and ammonia nitrogen concentration, but linearly decreased the molar percentages of propionate and valerate. The total VFA concentration and the molar percentages of butyrate and isovalerate remained unchanged. Meanwhile, the increase in the peNDF8.0 concentration of the diet linearly increased the activities of carboxymethyl cellulase, avicelase, ß-glucanase, and ferulic acid esterase in rumen fluid, but did not affect the activities of xylanase. Total plasma antioxidant capacity, γ-glutamyl transpeptidase activity, and plasma concentrations of total protein, albumin, creatinine, and malondialdehyde were linearly decreased by the increased dietary peNDF8.0 concentration. The increase in peNDF8.0 concentration raised the plasma concentrations of glucose, triglyceride, cholesterol, and blood urea nitrogen. Somatic cell counts in the milk were positively correlated with the dietary peNDF8.0 concentration. The feed and milk energy efficiencies were unaffected by the treatments. Shortening the total mixed ration mixing time may be a practical strategy to increase the peNDF8.0 concentration and reduce the risk of SARA in dairy cows fed high-concentrate diets.


Assuntos
Lactação , Rúmen , Animais , Bovinos , Detergentes/metabolismo , Dieta/veterinária , Fibras na Dieta/metabolismo , Digestão , Feminino , Fermentação , Concentração de Íons de Hidrogênio , Mastigação , Leite , Plasma , Gravidez , Rúmen/metabolismo
18.
Am J Physiol Cell Physiol ; 318(6): C1284-C1293, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32320287

RESUMO

The present study aimed to elucidate the mechanisms by which leucine impacts the secretion of pancreatic enzymes, especially amylase, by studying the proteomics profiles of pancreatic acinar (PA) cells from dairy cows. PA cells, the experimental model, were treated with four concentrations of leucine (0, 0.23, 0.45, and 0.90 mM). The abundance of different proteins in the four leucine treatment groups was detected. Label-free proteomic analysis enabled the identification of 1,906 proteins in all four treatment groups, and 1,350 of these proteins showed common expression across the groups. The primary effects of leucine supplementation were increased (P < 0.05) citrate synthase and ATPase activity, which enlarged the cytosolic ATP pool, and the upregulation of secretory protein 61 (Sec61) expression, which promoted protein secretion. In summary, these results suggest that leucine increases citrate synthase in the TCA cycle and ATPase activity and promotes the Sec signaling pathway to increase the exocrine function of PA cells.


Assuntos
Células Acinares/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Leucina/farmacologia , Pâncreas Exócrino/efeitos dos fármacos , Via Secretória/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , alfa-Amilases/metabolismo , Células Acinares/enzimologia , Trifosfato de Adenosina/metabolismo , Animais , Animais Recém-Nascidos , Bovinos , Células Cultivadas , Citrato (si)-Sintase/metabolismo , Indústria de Laticínios , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Pâncreas Exócrino/enzimologia , Proteômica , Canais de Translocação SEC/metabolismo
19.
J Dairy Sci ; 103(5): 4218-4235, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32113753

RESUMO

Starch digestion in the small intestine in ruminants is relatively lower compared with that in monogastric animals, likely due to low pancreatic α-amylase secretion. Previous studies suggested that leucine could increase pancreatic α-amylase secretion in the small intestine of heifers cannulated with abomasal, duodenal, and ileal catheters. However, the surgical procedures probably have an effect on pancreatic function. Thus, we used rumen-protected leucine (RP-Leu) to explore its effect on small intestinal digestion of starch in calves without any surgery in 3 experiments. The first experiment was to explore whether RP-Leu could improve post-ruminal starch digestion in 5-mo-old calves (158 ± 19 kg body weight ± standard deviation). We found that RP-Leu did not affect rumen fermentation profile or whole-tract starch digestibility, but it increased blood glucose concentration and fecal pH and decreased fecal propionate molar proportion. Additionally, RP-Leu increased fibrolytic genera Ruminiclostridium and Pseudobutyrivibrio and decreased the amylolytic genus of Faecalibacterium. The second experiment compared RP-Leu and rumen-protected lysine (RP-Lys) for their effects on post-ruminal starch digestion in 6-mo-old calves (201 ± 24 kg body weight). The responses of blood glucose concentration, fecal pH, fecal propionate proportion, and starch digestibility to RP-Leu supplementation were similar to those observed in experiment 1. Cellulolytic family Ruminococcaceae and Bacteroidales BS11 gut group tended to be increased by RP-Leu. In contrast, RP-Lys showed no significant influence on the above measurements. The third experiment determined the interaction between RP-Leu and rumen-escape starch (RES) on the small intestinal digestion of starch in 8-mo-old calves (289 ± 26 kg body weight). An interaction between RP-Leu and RES levels was observed in fecal butyrate concentration and the relative abundance of family Bacteroidaceae, and genera Ruminococcaceae UCG-005 and Bacteroides. We found that RP-Leu tended to increase the abundance of fecal Firmicutes and decrease Spirochaetae. In conclusion, RP-Leu, but not RP-Lys, increased blood glucose concentration and decreased the amount of starch fermented in the hindgut in a RES dose-dependent manner, suggesting that RP-Leu might stimulate starch digestion in the small intestine.


Assuntos
Ração Animal , Glicemia/metabolismo , Bovinos , Intestino Delgado/metabolismo , Leucina/farmacologia , Amido/metabolismo , Abomaso/metabolismo , Animais , Animais Recém-Nascidos , Dieta/veterinária , Digestão , Fezes/microbiologia , Fermentação , Leucina/metabolismo , Masculino , Nitrogênio/metabolismo , Rúmen/metabolismo
20.
Toxicol In Vitro ; 54: 295-303, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30342220

RESUMO

Our previous study found that 2-aryl-1-cyano-1,2,3,4-tetrahydroisoquinolines (CATHIQs) have excellent anti-cancer activity and obvious apoptosis induction phenomenon. As our continuing research, this study further explored their underlying molecular mechanism of apoptosis induction in cancer cells. Flow cytometry analysis showed that the NB4 cells treated by 1-cyano-2-(2-fluorophenyl)-1,2,3,4-tetrahydroisoquinoline or the MKN-45 cells treated by 1-cyano-2-(4-trifluoromethylphenyl)-1,2,3,4-tetrahydroisoquinoline for 48 h were at early stage of apoptosis, and the cell cycle arrest was only slightly affected. Apoptosis rates of the cells significantly increase with the treatment concentration of the compounds. The compounds could significantly decrease the activities of SOD, raise the MDA level and promote the LDH leakage, suggesting that the excessive formation of ROS should be involved in the cell apoptosis. Western blot analysis showed that the compounds improved both Bax/Bcl-2 ratio and cleavages of procaspase-3, promoted efflux of cytochrome c to cytosol and phosphorylation of p38 and JNK, and attenuated phosphorylations of Akt and ERK. Together, inhibitions of PI3K/Akt and ERK and activation of p38 mediated the compounds-induced apoptosis through modulating the mitochondrial pathway and/or ROS production.


Assuntos
Antineoplásicos/farmacologia , Tetra-Hidroisoquinolinas/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Humanos , L-Lactato Desidrogenase/metabolismo , Malondialdeído/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosfotransferases/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA